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Abstract: The autonomous maneuver decision of UA V plays an important role in future air combat, However, the strong 
compehhveness of the arr combat environment and the uncertainty of the opponent make it difficult to solve the optimal strategy. 
For these problems, we propose the algorithm based on deep reinforcement learning and game theory, which settles the matter 
that the existing methods cannot solve Nash equilibrium strategy in highly competitive environment, Specifically, 1 v l  air combat 
1s modeled as a two-player zero-sum Markov game, and a simplified two-dimensional simulation environment is constructed. 
We prove that the algorithm has good convergence through the simulation test, Compared with the opponent' s  strategy using 
DQN, our algonthm has better arr combat performance and is more suitable for the air combat game environment, 
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1 Introduction 

With the informatization development of modem military 
warfare, air combat game of UA V is the main means to 
master aerial supremacy. Compared with the manned 
aircraft, it greatly reduces the risk of performing missions 
and improves combat efficiency. The traditional UAV 
works by ground stations [ 1 ] ,  which is difficult to complete 
the accurate and timely control. Thus, it's of great 
significance to study the autonomous maneuver 
decision-making [2] capacity ofUAV. 

The modeling and calculating of traditional air combat 
maneuver autonomous decision are based on expert domain 
knowledge [3,4] . This method essentially relies on the 
experience of human experts, making it restrictive to 
completely cover all air combat situations due to the 
complex construction of the repository. In addition, methods 
based on supervised learning [5,6] have strong robustness 
and adaptability, but require a large amount of training data 
to obtain ideal maneuvering decision-making effects. 

Reinforcement learning [7] adopts trial and error to 
interact with the environment. It evaluates the result of 
maneuver selection by calculating the cumulative rewards 
after performing the action in the current state. Therefore, 
reinforcement learning not only considers the influence of 
the current state on the air combat situation, but also 
considers the long-term impact of maneuvering actions, 
which can well satisfy the uncertainty in the air combat 
process. Furthermore, reinforcement learning does not 
require training samples [8] and deals with the problem of 
maneuvering decision-making effectively. 

One of the challenges in applying reinforcement learning 
to air combat is how to store the action-value function. Due 
to the high-dimensional state space of air combat, traditional 
reinforcement learning algorithms suffer from a 
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dimensional explosion. The emergence of deep 
reinforcement learning [9] solves this problem, which 
combines deep neural networks and reinforcement learning. 
The nonlinear fitting ability of deep neural networks [ 10] is 
used to break through the limitations of finite-dimensional 
state input, making air combat UA V s more capable of 
dealing with complex problems. 

In the 1 vl air combat task, both the enemy and us update 
and adjust their strategies in time according to the battlefield 
situation. This is a dynamic game process, which is highly 
confrontational and involves complex conflicts of interest. 
This results in that air combat decision using the existing 
methods [ 1 1 ] cannot make specific decisions against the 
opponent's strategy in a highly competitive environment, so 
the win rate is low. Game theory [ 12] model expresses the 
interaction between the strategies of two sides, and acquires 
the optimal strategy of friend or foe. However, in traditional 
game, players have no ability to learn. They pay more 
attention to the strategies of other players at the current step. 
On this account, we combine the self-learning ability of 
reinforcement learning, the ability of neural network to 
handle high-dimensional states, and the idea of equilibrium 
decision in game theory, and apply them to air combat 
problems, aiming to obtain more intelligent and adversarial 
autonomous maneuvering decisions. 

In this paper, we propose the algorithm based on deep 
reinforcement learning and game theory to deal with strong 
competitiveness of the air combat environment and the 
uncertainty of the opponent. This algorithm solves the 
problem that the existing methods only unilaterally optimize 
its own interests without considering the adversarial factors 
in the air combat game. In addition, we model the 1 vl  air 
combat as a two-player zero-sum Markov game and 
construct a simplified two-dimensional simulation 
environment. We prove that our algorithm has good 
convergence through the simulation test. Compared with the 
opponent's strategy using DQN, our algorithm can more 
effectively make real-time decisions for the opponent's 
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strategy, and is more suitable for the air combat game 
environment. 

The rest of this paper is organized as follows. In Section 2, 
the air combat game is modeled. In Section 3 ,  we describe 
our method. In Section 4, we demonstrate the experiments 
and analyze results. We conclude in Section 5 .  

2 Model 

2.1 Two-player Zero-sum Markov Game 

In this paper, we model the 1 v1 air combat problem as a 
two-player zero-sum Markov Game. 

Two-player zero-sum Markov Game [ 1 3] is an extension 
of Markov decision progress [ 14] combined with zero-sum 
matrix game. Markov decision process is a multi-process 
decision-making theory. The agent continuously interacts 
with its environment, gets feedback and makes actions 
according to the feedback to optimize its benefits. The 
zero-sum matrix game describes a two-player static 
zero-sum game. The static means that both players make 
actions at the same time. The zero-sum means that the sum 
of the payoff functions of two players is zero. We can obtain 
a two-player multi-process dynamic decision-making model 
combining the two, that is, Markov Game model, which can 
be defined as a quintile (S, A, O, T, R) : 

• S: environment state space. 
• A: agent action space. 
• 0: opponent action space. 
• T: S x A x  0 x S � [ 0, 1] , represents the transition 

probability function from one state to the next state: 

T(s, a, o, s') = P(s' I s, a, o) ( 1 )  

where, s, s
' E S , represent the state of the environment. 

a E A , o E 0 , represent the actions of the agent and 
opponent respectively. P represents the conditional 
probability. 

• R: the reward function of agents, S x A x  0 x S � R , 
which represents the expectation reward from executing the 
action to the next state in the current state: 

R(s, a,o, s') = E{T;+1 I s1 = s, a1 = a,o1 = o, s1+1 = s'} (2) 

where, T;+l represents the direct reward obtained from the 

moment t + 1 . 

The decision-making basis of the agent is to maximize its 
own reward, so its goal is to find a strategy Jr , so that the 
agent can obtain the largest cumulative expectation reward 
according to the strategy Jr in the process of the game: 

where Jr and Jr- represent the strategies of the agent and 
the opponent respectively. n represents the number of steps 
from the current moment to the termination moment. 
y E [ 0, 1] represents the discount factor. 

2.2 lvl Air Combat Description 

A Aircraft Dynamics Model 
Firstly, we establish a mathematical model of the aircraft 

in an ideal two-dimensional plane through dynamic analysis, 
and present a series of assumptions [ 1 5] to simplify the 
study. 

• The ground is assumed to be an inertial reference 
frame. 

• The mass, gravitational acceleration and rotational 
inertia of the aircraft are invariable. 

• Regardless of the sideslip angle of the aircraft. 
• The direction of the speed and the body are 

approximately coincident. 
The aerodynamics equation [ 1 5] for the aircraft are shown 

in Eq. (4). 

X =  V COS lj/ 
y = v sin lj/ 

v = !i. 
m 

ip = Uq, 
. g tan ip lj/ = --

v 

(4) 

where, g = 9 . 8 1 .  IP is expressed as the rotation angle of the 
body coordinate system about o-x axis. If/ is expressed as the 
rotation angle of the body coordinate system about o-y axis. 
The input of the dynamic model is thrust, and the output is 
velocity and angular velocity. 

B State Space 

1 v1 air combat model is based on the two-player 
zero-sum Markov Game. S is the state space of air combat, 
composed of positions, velocities, angles: 

s = [ xb , yb , xr , y  r' vb , vr , rfi, ¢,_, lj/b , lf/r ] (5) 

where, ( xb , yb ) , ( xr , Yr ) are the positions of the blue aircraft 

and the red aircraft respectively. Both aircrafts fly in the 
two-dimensional plane with no restrictions on their 
positions. vb and vr are the speeds of blue and red 
respectively, limited to a certain range. tA, and ¢,. are the roll 
angles, confined to the maximum turning maneuverability 
of the blue and red. lf/6 and lf/r are the heading angles, which 

can take any value within ± 1 80°. 

C Action Space 

1 v1 air combat is a dynamic and continuous process of 
confrontation. In the current state, the aircraft calculates the 
state value at the next moment according to the kinetic 
equation. We utilize two continuous variables to control the 
maneuvering of the aircraft. In two-dimensional plane, we 
leave out the pitch and sideslip motion of the aircraft. The 
action space is defined as follows : 

(6) 
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where, u1 is the thrust, used to control the velocity of the 

aircraft. u .  is the roll angular rate, which commands the rp 
turning maneuverability and decides how much the aircraft 
can roll. Both two are restricted according to the actual 
performance of the aircraft. 

D Rewards 

In the 1 v1  air combat mission set in this paper, the blue 
aircraft's target is to rapidly reach and maintain an 
advantage position behind the red aircraft, making it easy to 
launch a missile to destroy the red aircraft. Aspect angle 
(AA) and antenna train angle (ATA) are displayed to 
quantify the rewards (see Fig. 1) .  

Red 

,,, 

Blue 

Fig. 1 :  AA and ATA 

In Fig. 1 ,  the blue aircraft's  antenna train angle (ATA) is 
the angle between LOS line and its velocity, which reflects 
the degree of following the red aircraft. The blue 's  aspect 
angle (AA) is the angle between LOS line and the red's 
velocity, which reflects the degree of steadily following the 
opponent. Both the AT A and AA can take any value within 
± 1 80°. 

1 v1 air combat belongs to a strictly competitive game, the 
success of one side corresponds to the failure of the other 
side, and the success and failure of both aircrafts add up to 
zero. If the blue aircraft reaches the enemy's attack zone, it 
will gain a positive reward at the current step. Conversely, it 
will receive a negative reward if the opponent tracks its 
attack zone. In other conditions, the reward is zero. The 
reward function is designed in Eq. (7) : 

1 1 .0, IATAb l <30 °  A I AAb 1 < 60 °  
Rb = -Rr = - 1 .0, jATAr l< 30 oA IAAr l< 60 o 

0, otherwise 

(7) 

The ATA and AA of two sides satisfy the following 
geometric relationship [ 1 6] :  

3 Method 

IATAb i + IAAr l = 1 80" 
IATAr i + IAAb l = 1 80" 

3.1 Nash Equilibrium 

(8) 

The most widely used concept of a solution in game 
theory is the Nash equilibrium [ 1 7], which embodies the 
steady state of strategic game action. Game theory deals 
with strategic interactions between players, whose decisions 
are mutually influenced. Players make decisions under 
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iterative considerations and choose the most beneficial 
strategy for themselves. Nash equilibrium refers to a state of 
the game in which no player can benefit more from changing 
his current decision if the other player's  strategy remains 
unchanged. In other words, Nash equilibrium is a 
combination of strategies where each player's strategy is the 
optimal strategy for the others. Similar to the optimal 
solution in machine learning, finding Nash equilibrium is 
the optimal strategy solution problem. 

Nash equilibrium joint strategy [ 1 8] can be expressed as 
;r'=(llj', . . .  ,;r;) , v; = (llj' , . . .  ,;r;) represents the expected payoff 

of the players under the joint strategy, that is, the value 
function. For all s ES and i =� . .  ·, n : 

(9) 

where, ;r�i is the joint strategy expect the player i, ITi is the 

policy profile of i, v;(s,ff;',;r�J is the discounted payoff of all 

players in the current state s. QJ a1 , . . .  , aJ is defined to 
represent the expected reward obtained by the player i when 
performing joint actions. IT; (aJ is denoted as the probability 
ofthe player i choosing an action ai .Then Nash equilibrium 

can be expressed as: 

( 10) 

3.2 Deep Q Learning 

Traditional Q learning uses a Q table to store the Q value 
of each state-action, which leads to an explosion of 
dimension when the state and action spaces are 
high-dimensional and continuous. In order to solve this 
problem, DQN integrates deep neural network and 
reinforcement learning, takes advantage of the nonlinear 
fitting ability of deep neural network to approximate the 
state-action value function, and iteratively updates the 
policy through gradient descent algorithm [10] .  

In addition to using a neural network to approximate the 
value function, experience reply and target network are 
proposed as two innovative points of DQN. Experience 
reply breaks the correlation between training data. It not 
only solves the problem of large parameter update variance 
caused by continuous samples, but also improves the 
utilization of the data. The target network has the same 
structure as the Q network, but does not train itself. The 
purpose of constructing the target network is to enhance the 
stability of training Q network and reduce the 
non-convergence of the network weights. Therefore, the 
update of the value function is expressed as: 

Ql+1 (s,a) = (1 -a)Q/s,a)+a[r + ymaxQ(s',a')] ( 1 1 )  

3.3 DQN for Two-player Game 

Traditional reinforcement learning has the problem of 
dimensional explosion and tends to unilaterally maximize its 
own interests. As a result, deep neural network is introduced 
to approximate the Q function for the high-dimensional and 
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continuous state space of air combats. And we apply the 
concept of Nash equilibrium to solve the air combat 
maneuver decision problem with strong confrontation and 
complex conflict. Therefore, we propose the algorithm 
extending DQN to the two-player zero-sum Markov Game. 
This algorithm can be used to acquire approximate 
equilibrium maneuver decisions combined with the 
opponent's strategy in 1 v1 air combat scenarios. The 
algorithm flow is showu in Algorithm 1 .  

Algorithm 1 :  DQN for Two-player Game 
Input: S, A6, A' , training parameters 
Initialize replay memory D to capacity N 
Initialize Q-network with random weights B 
Initialize target network Q- with weights g- = B 
Initialize Q6_, (

s, a6 , a' ) = 0 Va6 E A6 , a' = A' 
for episode=1 ,  M do 

Get initial state S0 
Select A;b according to exploration utilization method 

Get A; according to environment settings 

Execute A b and A' , get R , enter next state S .L.1.y .L.1.y t t+l 
Store transition (S1 , A:' ,  A; , R1 , S1+1 ) in D 
Sample minibatch of (S1 , A1b, A; , R1 , S1+1) from D 
Get NashQ; (s') = trb (s')tr' (s') . Q; (s') by linear program 

for each i E b, r ,  compute the target: 

Q;+Js, ab , a') =  (1- a,)Q; (s,ab , a') +  a,[�1 + yNashQ;(s')] ( 12) 

Update Q-network: perform a gradient descent step 
Update target Q- : update g- � e every C steps 

end for 
Output : Q-network and equilibrium policy 

4 Experiment and Analysis 

A Simulation Environment 

We construct a dynamically simplified two-dimensional 
plane. Our aircraft and the enemy aircraft are represented by 
blue and red particles respectively. The aircraft's dynamic 
model and air combat environment are programmed by 
Python 3 ,  which integrally logs the state data of the two 
aircrafts. The simulation environment is showu in Fig. 2.  

Fig. 2.  The air combat simulation environment 
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B Training 

The blue aircraft model is trained by modified DQN, and 
the red is trained by DQN. Tensorboard is used to observe 
the entire training process. We simulate a total of 1 million 
episodes. The exploration rate drops from 1 to 0.05 within 
100000 episodes, and remains at 0.05 in the rest of episodes. 
The buffer size is 106, the batch size is 32, the discount 
factor y is 0.99 and the learning rate a is 0.000 1 .  The target 
update interval is set to 1000. Fps is about 7 1 4, means that 
714  actions can be completed in one second. If an air combat 
is set to 25 steps, that is, 28 battles can be fought in one 
second. The airspace is limits to ± 1 000 . At the beginning of 
each episode, the two aircraft are in random states. 

The average reward of each episode is used to measure 
the air combat advantage. The superiority of two algorithms 
are visually compared by the win rate. The convergence 
process of average reward for the two aircrafts and the win 
rate are severally showu in Fig. 3 .  

12 ������-.--�--.-�--�----� 
--- Modified DON 
-- DON 

10 

8 
"E � 6 ., a:: 
"' "' 
!!' ., 4 
> <( 

2 

0 

-2 
0 2 3 5 6 8 

Episodes 

(a) Average Reward 

-0.1 '---'-----'-----'---'-----'-----'---'----'-----'-----' 
0 2 6 10 

Episodes x 1 o5 
(b) Win Rate of Modified DQN 

Fig. 3 .  The convergence process of average reward and win 
rate in the training process.  

In Fig.3(a), the average reward of both modified DQN 
and DQN tends to be stable, proving that the two algorithms 
have good convergence. However, the average reward of 
modified DQN is higher than DQN at the end of the training 
process. In Fig.3(b), Modified DQN did not explore better 
strategies at the beginning, resulting in a very low win rate 

of confrontation. With the increase of training times, it rises 
gradually and finally converges to about 60 percent. 

C Evaluating 

In order to evaluate strategies generated by the two 
algorithms, the two aircrafts fight against each other for 
10000 times. We define that the blue aircraft wins the game 
if it satisfies Eq. (7) for ten steps in one air battle, and it loses 
in other cases. The game results are recorded in Table 1 .  

It can b e  seen that the blue aircraft wins 6 1 1 3  times and 
the red wins 3887 times. The win rate of blue aircraft is 
6 1 . 1% by calculating, shows that it has a slight advantage 
over the red aircraft in the same adversarial environment. 
This proves that Modified DQN learns more intelligent and 
accurate maneuver strategies in strong confrontational 
environment, and it is more suitable for the air combat game 
compared with DQN. 

Table 1 :  Modified DQN vs DQN 

Result Modified DQN DQN 
Win 6 1 1 3  3887 
Lose 3887 6 1 13 

Win rate 6 1 . 1% 38.9% 

5 Conclusion 

In this paper, an air combat maneuver strategy algorithm 
is proposed based on deep reinforcement learning and game 
theory. In terms of the strong competitiveness of the air 
combat environment and the uncertainty of the opponent, 
this algorithm deals with the problem that the existing 
methods are difficult to solve Nash equilibrium strategy in 
highly competitive environment. Simulation results show 
that this algorithm has good convergence. Moreover, it 
possesses better air combat performance compared with the 
opponent's strategy using DQN. 

There are still some issues that have not been resolved. 
Our aircraft modeling and simulation environment is too 
simple and very different from real air combat scenarios. In 
addition, we only study the strategy problem of 1 v1 air 
combat, whereas the real-world scenario is many-to-many 
air combat, which involves more complex cooperative and 
adversarial conflicts. Our future work will be devoted to the 
more challenging problems of air combat maneuver 
decision. 
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10000 times. We define that the blue aircraft wins the game 
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5 Conclusion 

In this paper, an air combat maneuver strategy algorithm 
is proposed based on deep reinforcement learning and game 
theory. In terms of the strong competitiveness of the air 
combat environment and the uncertainty of the opponent, 
this algorithm deals with the problem that the existing 
methods are difficult to solve Nash equilibrium strategy in 
highly competitive environment. Simulation results show 
that this algorithm has good convergence. Moreover, it 
possesses better air combat performance compared with the 
opponent's strategy using DQN. 

There are still some issues that have not been resolved. 
Our aircraft modeling and simulation environment is too 
simple and very different from real air combat scenarios. In 
addition, we only study the strategy problem of 1 v1 air 
combat, whereas the real-world scenario is many-to-many 
air combat, which involves more complex cooperative and 
adversarial conflicts. Our future work will be devoted to the 
more challenging problems of air combat maneuver 
decision. 

References 

[ 1 ]  H. Yu, L. Qi, Development and challenges of UA V 
autonomous control technology, China New 
Communications, 2020. 

6943 

[2] S. Zhou, W. Wu, N. Zhang, at al. ,  A review of autonomous air 
combat maneuver decision-making methods, Aviation 
Computing Technology, 42(1) :  5, 2012. 

[3] L. Fu, F. Xie, G. Lei, at al., An expert system for UAV air 
combat decision-making based on rolling time domain, 
Journal of Beijing University of Aeronautics and 
Astronautics, 041 (01 1) :  1994- 1999, 2015 .  

[4] S. Gao, Application of expert system in multi-aircraft air 
combat tactical maneuver decision-making simulation 
system, Academic Annual Meeting of Information Systems 
Engineering Professional Committee of Chinese Society of 
Systems Engineering, 1997. 

[5] B. Zhang, Y. Kou, W. Meng, at al., Close-range air combat 
situation assessment using deep belief network, Journal of 
Beijing University of Beijing University of Aeronautics and 
Astronautics, 43(7): 1450- 1459, 2017. 

[6] X. Yang, J. Ai, Research on the maneuvering strategy of 
UA V to evade missiles in autonomous air combat, Journal of 
System Simulation, 30(5): 10, 2018 .  

[7] C. Sun, H. Zhao, Y. Wang, at al., Decision-making method 
for autonomous maneuvering of unmanned aerial vehicles 
based on reinforcement learning, Firepower and Command 
and Control, 44(4): 8, 2019. 

[8] R. Sutton, A. Barto, Reinforcement learning, Journal of 
Cognitive Neuroscience, 1 1 (1) :  126-134, 1999. 

[9] Y. Li, Deep reinforcement learning: An overview, in arXiv: 
1 701. 07274, 2017 .  

[ 10] V.  Mnih, K.  Kavukcuoglu, D Silver, at al., Playing atari with 
deep reinforcement learning, in arXiv: 1312.5602, 2013 .  

[ 1 1] X.  Ma, L .  Xia, Q. Zhao, Air-combat strategy using Deep 
Q-Leaming, in IEEE 2018 Chinese Automation Congress 
(CAC), 201 8: 3952-3957. 

[ 12] S.  Tadelis, Game theory: an introduction, Princeton 
University Press, 2013 .  

[ 13] M.  Johnson, S. Bhasin, W.  Dixon, Nonlinear two-player 
zero-sum game approximate solution using a policy iteration 
algorithm, in IEEE 2011 50th Conference on Decision and 
Control and European Control Conference, 201 1 : 142-147. 

[ 14] Z. Wei, J. Xu, Y. Lan, at al., Reinforcement learning to rauk 
with Markov decision process, in Proceedings of the 40th 
International ACM SIGIR Conference on Research and 
Development in Information Retrieval, 2017: 945-948. 

[ 1 5] W. Kong, D. Zhou, Y. Zhen, Air combat strategies generation 
of CGF based on MADDPG and reward shaping, in IEEE 
2020 International Conference on Computer Vision, Image 
and Deep Learning (CVIDL), 2020: 651 -655 .  

[ 1 6] W. Kong, D. Zhou, K.  Zhang, at al., Air combat autonomous 
maneuver decision for one-on-one within visual range 
engagement base on robust multi -agent reinforcement 
learning, in IEEE 2020 16th International Conference on 
Control and Automation (ICCA), 2020: 506-5 12. 

[ 17] E. Maskin, The theory of implementation in Nash 
equilibrium: A survey, 1983. 

[ 1 8] J. Hu, M. Wellman, Nash Q-learning for general-sum 
stochastic games, Journal of Machine Learning Research, 4: 
1039-1069, 2003. 

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 01,2022 at 13:47:57 UTC from IEEE Xplore.  Restrictions apply. 


